Neuronal survival depends on EGFR signaling in cortical but not midbrain astrocytes.
نویسندگان
چکیده
Mice lacking epidermal growth factor receptor (EGFR) develop a neurodegeneration of unknown etiology affecting exclusively the frontal cortex and olfactory bulbs. Here, we show that EGFR signaling controls cortical degeneration by regulating cortical astrocyte apoptosis. Whereas EGFR(-/-) midbrain astrocytes are unaffected, mutant cortical astrocytes display increased apoptosis mediated by an Akt-caspase-dependent mechanism and are unable to support neuronal survival. The expression of many neurotrophic factors is unaltered in EGFR(-/-) cortical astrocytes suggesting that neuronal loss occurs as a consequence of increased astrocyte apoptosis rather than impaired secretion of trophic factors. Neuron-specific expression of activated Ras can compensate for the deficiency of EGFR(-/-) cortical astrocytes and prevent neuronal death. These results identify two functionally distinct astrocyte populations, which differentially depend on EGFR signaling for their survival and also for their ability to support neuronal survival. These spatial differences in astrocyte composition provide a mechanism for the region-specific neurodegeneration in EGFR(-/-) mice.
منابع مشابه
The Role of Wnt Signaling Pathway on the Expression of TGFβ 1 and TGFβ 2 in Cultured Rat Cortical Astrocytes
Introduction: Astrocytes, the most abundant glia in the central nervous system, modulate neuronal survival and function. Astrocytic functions are mediated by synthesis and secretion of wide ranges of polypeptides through mechanism (s) poorly understood. Among these, TGFβs are synthesized and released by the astrocytes. In this study, the involvement of Wnt signaling pathway on the synthesi...
متن کاملThe role of glia in neurological disease
Glial cells form a network in the central nervous system to support neurons and interact with them. The glia consist essentially of astrocytes that help with the nutrition of neurons and react in some cases of injury, oligodendrocytes that produce myelin, and microglia that are derived from the haemopoietic system and are concerned with the immunological defense of the nervous system. Experimen...
متن کاملThe role of glia in neurological disease
Glial cells form a network in the central nervous system to support neurons and interact with them. The glia consist essentially of astrocytes that help with the nutrition of neurons and react in some cases of injury, oligodendrocytes that produce myelin, and microglia that are derived from the haemopoietic system and are concerned with the immunological defense of the nervous system. Experimen...
متن کاملEffects of different culture media on optimization of primary neuronal cell culture for in vitro models assay
Background: In vitro model studies are becoming increasingly popular for experimental research designs. They include isolation and expansion of cells of a particular tissue, such as the nervous tissue which contributes to understanding the underlying mechanisms in many pathologies. It enables the scrutinization of intracellular signaling pathways responsible for cell death. OBJECTIVES: In the ...
متن کاملToll-Like Signaling and the Cytokine IL-6 Regulate Histone Deacetylase Dependent Neuronal Survival
Histone deacetylase (HDAC) proteins have a role in promoting neuronal survival in vitro, but the mechanism underlying this function has not been identified. Here we provide evidence that components of the neuronal microenvironment, including non-neuronal cells and defined culture media, can mitigate midbrain neuronal cell death induced by HDAC inhibitor treatment. Using microarrays we further i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 25 4 شماره
صفحات -
تاریخ انتشار 2006